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A QUASI-RANDOMIZED RUNGE-KUTTA METHOD 

IBRAHIM COULIBALY AND CHRISTIAN LECOT 

ABSTRACT. We analyze a quasi-Monte Carlo method to solve the initial-value 
problem for a system of differential equations y'(t) = f(t, y(t)). The function 
f is smooth in y and we suppose that f and Dlf are of bounded variation 
in t and that D2f is bounded in a neighborhood of the graph of the solution. 
The method is akin to the second order Heun method of the Runge-Kutta 
family. It uses a quasi-Monte Carlo estimate of integrals. The error bound 
involves the square of the step size as well as the discrepancy of the point set 
used for quasi-Monte Carlo approximation. Numerical experiments show that 
the quasi-randomized method outperforms a recently proposed randomized 
numerical method. 

1. INTRODUCTION 

The Monte Carlo method is a very general tool for solving various problems 
of mathematical physics, and its applications are not restricted to numerical inte- 
gration. It may be described as a numerical method based on random sampling. 
A good deal of effort has recently been directed to the use of quasi-Monte Carlo 
methods. A quasi-Monte Carlo method can be described as the deterministic vari- 
ant of a Monte Carlo method, in the sense that the random samples are replaced 
by judiciously chosen deterministic points. For instance, in the area of numerical 
integration it is irrelevant whether the sample points are random. Of primary im- 
portance is the even distribution of the points. A review of the development of this 
area is given in the monograph [3] by Niederreiter. 

A randomized algorithm for solving the initial value problem for the finite di- 
mensional system 

(1) y'(t) = f(t,y(t)), 0 < t < T, 

(2) y(O) = Yo 

was recently proposed by Stengle in [5]. The hypothesis is that f is smooth in 
space (y) but no more than bounded and measurable in time (t). The algorithm is 
a member of a family akin to the Runge-Kutta family. It generates a sequence Yn 
by the recurrence formula 

Yn+1 = Yn + hN (f (Ujn Yn + hnf (Uj,nv Yn)) + f (uj,nv Yn) ) 
O<j<N 

Ujn= max(Ti,j,n , T2,j,n), uj,n= min(TiJ,n,, T2,J,n), 
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where for each step {Tl,jvn O < j < N} and {T2,j, : 0 < j < N} are fresh 
N-fold random samples of the uniform distribution on [tn, tn+1]. The entire family 
is called the Runge-Kutta Monte Carlo (RKMC) family. Stengle indicates that 
these methods can enjoy some advantages compared to standard methods under 
two conditions. First, the rate at which f varies in y must be significantly smaller 
than the rate at which f varies in t (a complete lack of regularity in t being an 
extreme case). Second, the speedup which can be gained by parallel computation 
of the Monte Carlo estimates must be of consequence. 

It may be hoped that the improvement achieved by using evenly distributed 
points in place of random numbers in integration problems can also be attained in 
initial-value problems. In this paper we propose a Runge-Kutta quasi-Monte Carlo 
(RKQMC) method which is of second order. It makes use of point sets with small 
discrepancy. Let A, be the s-dimensional Lebesgue measure. For a point set X 
consisting of N points xo, ... ., XN1 in the half-open unit cube P = [0, 1)s and a 
measurable subset E of Is, the local discrepancy is defined by 

DN(E,X) = (E )-s(E)' N 

where A(E, X) is the number of j, 0 < j < N, with xj E E. The discrepancy of 
the point set X is given by 

DN (X) = SUP IDN (J, X), 
J 

the supremum being taken over all half open subintervals of Is. We refer to [2] 
for background material on this topic. The RKQMC method uses the same two- 
dimensional low discrepancy point set X for the quasi-Monte Carlo approximation 
at each time step. 

The paper is organized as follows. In ?2 we describe the RKQMC method. In ?3 
we derive an error bound. If r1 is the maximum of the step size, the error is bounded 
by a linear combination of r 2 and DN(X). In ?4 we consider the simple model 
problem proposed by Stengle. The numerical results indicate that a significant 
improvement in magnitude of error is achieved over the RKMC scheme. In ?5 we 
summarize the main points and conclusions of the paper. 

2. A RUNGE-KUTTA QUASI-MONTE CARLO METHOD 

We consider the initial value problem for the p-dimensional system (1),(2) where 
yo is given in RP. We assume that the problem is uniquely solvable and that the 
solution y(t) is absolutely continuous on [0, T]. Let 11 .1 be a norm on RP and 
let B(y, p) denote the corresponding open ball with center at y and radius p. We 
assume that f satisfies the following hypothesis. 

Hypothesis. There exist T > 0 and p > 0 such that 

* For every t E [0, T] the function y -* Df (t, y) is continuous on the open ball 
B(y(t), p), for 0 < m < 2. 

* Let 

Q= U [t) min(t + T, T)] x B(y(t), p) 
0<t<T 
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For every t E [0, T] and every y E B(y(t), p), 
1. the function u -* Df (u, y) is defined on [t, min(t+T, T)] and is bounded 

by JIDyf o,for 0 < m < 2; and 

2. the variation of the function u -* Dyf(u, y) on [t, min(t + T,T)] is 
bounded by VQ(DWf), for 0 < m < 1. 

The following notation will be used: if v is a vector with coordinates (Vi,V2), 

we write v = min(vl,v2) and v- = max(vl,v2). We consider a partition 0 = to < 
t1 < ... < t, = T of [0, T] into v subintervals of length hn = tn+- tn and we set 

= max hn. We have 
O<n<v 

(3) Y(tn+l) = Y(tn) + j f (t,y(tn) + f (u y (u)) du) dt. 

Through Taylor expansion in y one has approximately 

Y(tn+l) -. Y (tn) 

+ 2hn J Jt? f (f(s, y(tn)) + f (S,y(tn) + hnf (GSY(tn))))ds. 

The method of Heun [6] corresponds to the approximation s tn, s tn+1. Let 
-2 

X be a point set consisting of xo,x1, ... , XN1 E I . The second order RKQMC 
method generates a sequence (Yn) by 

Yn+1 = Yn 

+ 2N (f(tn + hnxYn) + f(tn + hnxiYn + hnf(tn +hniYn)) 
O<j<N 

3. BOUNDS FOR THE ERRORS 

The error analysis follows the general outline of the error analysis of Heun's 
scheme. The local discretization error is defined by 

n= 4 (Y(tn+l) - Y(tn)) 

-2h2 J)i Jni (Sf i 
y(tn)) + f (s Iy(tn) + hn f (s 8Y(tn)))) ds. 

We introduce an error term 
I tn+1 /tn+l 

= 2h2 Jtn jtn (fS(i Yn) + f (s, Yn + hnf (s, Yn)) )ds 

-2h2 Jn j (f (s, Y(tn)) + f (s ,Y(tn) + hnf (S, Y(tn)) ds, 

and the error of the quasi-Monte Carlo approximation 

=n = 2N E (f(tnr + hngx,yn) + f (tn + hnzjiYn + hnf(tn + hnzji n)) 
O<j<N 

-f 1 (ftn + hnX, Yin) + f (tni + hnyi Y+ hnif(tnj + hnX 
Yn)))dx. 
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The global discretization error is en = Yn-Y(tn)- We have the recurrence formula 

(5) en+l = en - hnn + hnEn + hn6n- 

We need an appropriate concept of total variation for functions of several variables. 
For a function so: I RP and for w,w' E I and 1 < i < s, let Two be 
the restriction of fo to the hyperplane xi = wi and A'w W,= TwT -T'w If 
K= {il,... ,ik} c [1,s], we set 

TK - T... Twk (,o and A ' = A?" A,k 

We put Twf( = Tl's] ,o and A ,'p = A[,p. If 

O= xO,i < x1,i < < xni,=1, for 1 < i < s 

define a partition of Is into subintervals, and a = (ai,,.. , as) with integers ai, 0 < 
ai < ni, we write Xa = (Xal,i,... ,Xas,s) and a+ = (a, + I,...,as + 1). The 

variation of (p on I in the sense of Vitali is defined by 

v() (s(p) = sup E IAI /XaXa+(PII 

a 

where P runs through all partitions of Is into subintervals. Let 1 = (1, ... ,1) e I 
then 

S 

V(f= S S V(k)(TTKc) 

k=l KC[l,s] 
#K=k 

is called the variation of fo on Is in the sense of Hardy and Krause. We refer to 
[2] for further information on this concept. The class of all functions of bounded 
variation on Is in the sense of Hardy and Krause will be denoted by BVHKs. By 
[7, Proposition 2], every function in BVHKs is Riemann-integrable on I . If fO is a 
function defined on I , we write ? (x) = p(x, x). We need the following technical 
results. 

Lemma 1. If p E BVHK2 , then ? E BVHK2. 

Proof. We have T1p0 ? = T12_o' = T12po. A short calculation shows that 

V(2) (Po) < 3V (2) () + V(1) (T1so) + V(1) (T2 

and the result of the lemma follows. 

If t E [0, T], 0 < h and y e RP, define 

qt,h,y (X) = f (t + hxl, y), 

fbt,h,y(X) = f (t + hX2, y + hf (t + hxl, y)), 

for x E 

Lemma 2. If t and t + h E [0,T], h < T and Ily-y(t)ll + 2hl f 100Q < P, then 

Ot,h,y and 'bt,h,y E BVHK2. 
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Proof. Straightforward calculations show that 

V() (Tl O)t,hy) = (O)gt, h,y) = O0 V 0)(T 1t, h,y) <_ VQ (f 

V(1) (Tjt,h,=y) < VQT(f)) 

Through Taylor expansion in y one finds 

V(1) (Tb12t,h,y) < hVQ(f) ID'f 11 and V (2) ('bt,h,y) < hVQ(f)VQ(Dlf). 

This completes the proof. [ 

We shall put 

On = O)tn,hn,Yn ?n = cktn,hn,Y(tn), V'n = VJtn,hn,Yn n = ftn hn,Y(tn) 

Then 

(6) En = h (Y(tn+l) - Y(tn)) - j2 (42n(x) + n(x))dx, 

(7) En = 2 j; (q$ (x) + 'bo (x))dx - 
/ (4? (x) + IQj(x))dx, 

(8) n= 2N n n 2 2 n n 

We now establish upper bounds for these terms, for 0 < n < v. 

Proposition 1. If hn < T and 2hn 1f < P, then 

(h2D ff+2 112 
li|n || < hn 11filI0Q (5jjfjjC0QjjD 2fI Q + 21ID' fI 'Q) -12 OO\ O Y OQ o 

Proof. By Lemmas 1 and 2, En is well defined. By using Taylor expansions in y we 
obtain En =-En,j + 6n,2 + 6n,3i where 

Enj = 2n 12 (1 Df (tn + hny, y(tn) + (hnf (tn + hnX, Y(tn))) 

(f (tn + hnX,Y(tn))) (1- dx, 

hn DH n~ () 
6n,2 = Df (tn + hnxi Y(tn)) 2 J2 

(j Df (tn + hnX, (1 - ()y(tn) + (Y(tn + hnX)) 

* (Y(tn + hnX) 
- 

Y(tn))d <)dx 

n,3 j (j D f (tn + hnX, (1 - )y(tn) + ,y(t)) 

* (Y(tn + hnX) - y(tn))2(1- <)d)dx. 

Hence the result of the proposition follows. 

Proposition 2. If hn < T and Ilen + 2hn lf 11 oo Q < p, then 

IlEnll < JID'f (1 + hn 
fID'f ) lien.l 
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Proof. We know from Lemmas 1 and 2 that each integral in (7) exists. By Taylor 
expansions in y, we find En = En,1 + En,2, where 

EnjDf 2 y(t, + h,x, (I - ()Y(tn) +'Yrn) (Yn - tn))dr dx 

En, 2] K] Dlf tn + hn (1 )(y(tn) + hnf (tn + hnx1 Y(tn))) 

?((Yn + hnf (tn + hnX, Yn))) 

Yn + hnf (tn + hnx Yn)- Y(tn) - hnf (tn + hnxi Y(tn))) d) dx, 

so that the desired bound for IlEnll follows. [ 

A bound for 6n is established by using techniques of Zaremba ([7]). 

Proposition 3. If hn < T and Ilenll + 2hn lf 11 oo O < p, then 

16nil <? V4(f) I+ hn (ID'f 11 + 2Vo(D f))) DN(X) 

Proof. We consider a double partition of I: 

0 = wo < WI < . < W=1, 

0= 0 Wk < (k+l < Wk+I, for 0 < k < , (e+i = 1, 

such that X C {' k = ('k1,' k2) 0< k1,k2 <? + 1}. Put 

h(W) = max (wk+1 - Wk)- 
O<k<e 

By using the multidimensional Abel summation formula with the auxiliary function 

((x) = DN([O, X1) X [O, X2), X), 

one finds for sufficiently small h(W), 

1 3 q ?n (xi) )Wkj+I 
- Wk1)(Wk2+1 -Wk2)>n((k1+1, k2+1) 

O<j<N O<kj,k2<e 

- 3 (f(tn +hnfk+ 1Yn) -f (tn + hnk,Yn ))DN([Wk 1 )2X) I 



A QUASI-RANDOMIZED RUNGE-KUTTA METHOD 657 

and 

N E 4,b(xj) - 3 (Wkj+1 - Wki)(Wk2+1 - Wk2)>b((ki+,lik2+1) 

O<j<N O?k1,k2<e 

- 

/3 A\k,(k+?'nDN ([Wkl, Wk2)2, X) 
0<kj<k2?< 

+ S 
/k,(k+ nDN ([O Wk2)2, X) 

o?k1,k2?< 

E S A\k,(kjT1jfnDN ([O, Wk)2 ,X) 

O<k<E 

+ E /\k,k+T12 fnDN ([Wk I1)21 X)- 

O<k<E 

Passing to the limit h(W) -* 0 and using Lemma 1 and the estimates of Lemma 2, 
we obtain the desired bound. 

We are now in a position to prove the convergence result. Put 

Ci(f) = A lifi looQ (511f lloo QllD 2f I + 21ID'f 112 ) 

c2(f, r) = IDf 11 (I + 1 YID'f ),' 

C3(fi'q) = VQ(f) I1 + 2q (|ID'f| 1 + 2VQ(D'f)) 

Proposition 4. If rj < T and 

eC2(f,n)Tll e0 11 + ec2(f)T (Ci(f )72 + C3(f,rl)DN(X)) + 2rq lf |00 Q < PI 

then, for 0 < n < v, 

<c2 (f,q)tn 
-)tq 

1 
i en ec2 (fr)tn e0 + c2(f) (fi) 2 + C3 (f ,r) DN (X)) 

Proof. Use (5) and combine it with Propositions 1, 2 and 3. D 

By a classical result (see [4, Theorem 2]), the discrepancy of any N-element point 
set X in dimension two satisfies 

(9) DN(X) > log N 

where c > 0 is an absolute constant. In [3], Niederreiter provides a survey of 
numerous low-discrepancy point sets. For integers N > 1 and b > 2, the N-element 
Hammersley point set in base b is given by 

X = {(b(j),j/N): 0 < j < N}, 

where f b is the radical-inverse function in base b. Then by [3, Theorem 3.8] 

(10) DN(X) < 4 (N + 2 b IlogN +b 2 

So the discrepancy of an N-element Hammersley point set attains the least possible 
order of magnitude. 

According to the estimate of Proposition 4, the RKQMC algorithm using an N- 
element Hammersley point set is of second order if N = 0(71-2). Stengle states that 
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the RKMC method yields the following error bound. There is a positive constant 
c such that, given a level , > 0, then with probability not less than 1 -, 

(11) |~~lienll < c qt2+(N (7nt) 

where S is bounded and S = O(71) if f is smooth. According to this estimate, the 
RKMC algorithm is second order if N = 0(71-3). 

4. A NUMERICAL EXAMPLE 

For illustration, we use second order methods to solve a simple model problem 
proposed by Stengle: 

(12) y'(t) = y(t) + usin(cos(At)), 0 <t < 1, 

(13) y(O) = 1, 

where A = 1023 and ,u = 5. Figure 1 compares global discretization errors obtained 
in solving this problem using the following schemes. 

* The method of Heun with 10 (RK1O) and 100 (RK100) equally spaced steps. 
* The RKMC method of Stengle with 10 equally spaced steps. It uses fresh 

100-fold random samples of the uniform distribution for each step. 
* The RKQMC method with 10 equally spaced time steps. It uses the 100- 

element Hammersley point set in base 2. 

The left panel shows RK1O (dashed line) and RKMC (solid line) results. The right 
panel shows RK100 (dashed line, only errors at time tn = n/10, 0 < n < 10 are 
shown for clarity) and RKQMC (solid line) results. Note the difference in vertical 
scales. The parameters are selected so that the integration with the larger time 
step is at the limit of its capacity to follow the solution. The result of the RKMC 
algorithm with 10 time steps follows the finer RK integration quite closely. But 
the use of the Hammersley point set in quasi-Monte Carlo approximation leads to 
a dramatic improvement in the Monte Carlo error. Similar numerical experiments 
performed using several low-discrepancy point sets were equally promising for quasi- 
Monte Carlo methods. 

Error Error 
0.2 '0.02 

0 .15 /^ \0 .015 X 

O . 1 / 0 \O. 01,'/\ 

0 .05 / \0 .005 /l\ 

Time .1t<= >i 2<- ? j 0 005V5 8 iTime 

-0.2 -0.02 

FIGURE 1. Comparison of second order Runge-Kutta methods. 
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5. CONCLUSION 

This paper demonstrates that a quasi-randomized Runge-Kutta method is fea- 
sible and can actually produce more accurate results than a randomized numerical 
method. It turns out that the randomness of the samples of the uniform distri- 
bution is irrelevant. The convergence analysis shows that if point sets with lower 
discrepancy than random sets are used, better than random convergence is pos- 
sible. The numerical results confirm this. There are quasi-Monte Carlo methods 
for various other numerical problems. In fact, for many Monte Carlo methods it is 
possible to develop corresponding quasi-Monte Carlo methods as their determinis- 
tic versions. In a companion paper ([1]) we present a quasi-random walk method 
which outperforms standard random walk methods. 
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